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We investigate the influence of the network’s size on the degree distribution �k in Barabási-Albert model of
growing network with initial attractiveness. Our approach based on moments of �k allows us to treat analyti-
cally several variants of the model and to calculate the cutoff function, giving finite-size corrections to �k. We
study the effect of initial configuration as well as of addition of more than one link per time step. The results
indicate that asymptotic properties of the cutoff depend only on the exponent � in the power-law describing the
tail of the degree distribution. The method presented in this paper is very general and can be applied to other
growing networks.
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I. INTRODUCTION

Complex networks have been widely studied by physi-
cists and researchers in many other fields. It was pointed out
that many natural and social networks are scale-free �SF�,
i.e., that the degree distribution �k giving the probability that
randomly chosen node has exactly k nearest neighbors be-
haves as �k−� for sufficiently large degrees k, typically with
the exponent � laying between 2 and 4 �1,2�. This most
striking feature of real-world complex networks is well de-
scribed within theoretical models proposed during the last
decade. However, in any finite network the power-law be-
havior of the degree distribution �k can hold only for the
values of k small enough in comparison to the number of
nodes N. Both experimental data and theoretical models of
scale-free networks indicate that the behavior of �k for k�1
for a finite network exhibits two regimes: below some kmax it
follows the power-law behavior as in an infinite network,
while above kmax it displays a much faster decay. The char-
acteristic degree kmax which separates these two regimes is
called a cutoff. Intuitively, the cutoff is due to the fact that
since the overall number of links present in a finite, nonde-
generated graph is bounded from above, so also is the degree
of each node. The truncation of the power-law affects many
properties of networks, especially the percolation ones, im-
portant in models for infection propagation of real diseases
or computer viruses. We note here that the cutoffs due to
finite-size effects have to be distinguished from the distribu-
tions’ changes when a small sample of the network is con-
sidered, as discussed in Ref. �3�, the fact which makes the
analysis of real networks very involved.

Many attempts were undertaken to estimate the position
of the cutoff for different network models. Here we consider
sparse networks with fixed average degree �which corre-
sponds to ��2�, and focus on the cutoff stemming from
finite-size effects. They depend strongly on whether the net-
work is growing and thus exhibits correlations age degree, or
is a homogeneous one �4�, obtained in a sort of thermaliza-
tion process leading to statistical equivalence of all nodes.

The results for homogeneous networks �5–7� indicate that
kmax should scale as �N1/��−1� for ��3 and as �N1/2 for 2
���3 as a result of structural constraints leading also to the
occurrence of correlations between node degrees. These re-
sults based either on probabilistic arguments or on extreme
values statistics did not provide an explicit form of the de-
gree distribution for a finite network. On the other hand, the
statistical ensemble approach of Ref. �8� led to kmax scaling
rather similar to N1/�5−�� for 2���3, at variance with the
prior results.

The models of growing networks allow for a more rigor-
ous treatment. In �9� a simple model of a growing tree net-
work has been solved exactly. The authors have deduced the
form of corrections to the degree distribution and found that
the cutoff scales as �N1/��−1� for any exponent � larger than
two. The scaling for ��3 is thus different from that ob-
served for homogeneous networks and can be understood as
a result of degree-degree correlations �6�.

In the present paper we give a general approach to obtain-
ing degree distributions in growing networks of finite size. It
is based on moments of connectivity distribution �k and
works for any case for which one is able to write the rate
equation for �k depending on the size N. Because of its
generality, the method is interesting by itself. In the paper we
discuss its application to the Barabási-Albert �BA� model
with initial attractiveness a0, introduced in different contexts
several times in the past �10�. The model is defined as fol-
lows. Starting from a finite graph of n0 nodes, at each step a
new node is introduced and joined to m previously existing
nodes with probability being proportional to k+a0, where k
is the degree of a node to which the new link is established.
This rule, called preferential attachment, causes the nodes
with high degrees to become connected to more and more
nodes. The simplest version of that model with a0=0 was
discussed by Barabási and Albert �11�. An effective algo-
rithm of building such a network with the attachment prob-
ability proportional to k consists in focusing on the links, and
not on the nodes of the graph. Each link ij is then considered
as a couple of oriented links i→ j and j→ i, pointing into
opposite directions. Because the probability of picking at
random an oriented link pointing onto the node with degree k
is proportional to k, the preferential attachment rule is simply*Email address: bwaclaw@th.if.uj.edu.pl
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realized by choosing that node as the one to which the newly
introduced node is attached.

The model has been extended to the case of a0�0 and
solved in the thermodynamical limit in �12�. The popularity
of this model is partially explained by its three important
properties: �i� the generated network is scale-free with tun-
able exponent �=a0+3, �ii� the generated network is a small
world one, �iii� the algorithm can be easily implemented on a
computer. The preferential attachment rule can be general-
ized to nonlinear attachment kernels �13,14�. These however
do not give pure scale-free behavior and thus will not be
discussed here.

Some of the results we present here were obtained previ-
ously in Ref. �9�. Our approach is however different from the
one of �9� and allows for solving more sophisticated variants
of the model. The method is explained in Sec. II where it is
introduced on the example of the simplest BA model with
m=1 and a0=0. In Sec. III we consider the influence of the
initial configuration on the cutoff function. This is of particu-
lar importance since it has been pointed out �9,15� that the
functional form of the cutoff depends strongly on the seed
graph. We show, however, that the leading behavior of the
cutoff function is independent on initial conditions and, for
large k, the cutoff can be well approximated by a Gaussian
form. Section IV is devoted to generalized attachment kernel
k+a0. Now both the exponent ��3 and the cutoff depend on
a0. We calculate the cutoff function explicitly and show that
it is no longer Gaussian but exhibits the scaling predicted in
�9�. Section V deals with nontree graphs. Some mathematical
formulas we exploit in the paper are discussed in the Appen-
dixes.

II. FINITE-SIZE EFFECTS IN A GROWING SCALE-FREE
TREE

For the presentation of our method, we begin with the
simplest variant of the model, namely the BA tree network
with m=1, n0=2, and without initial attractiveness. The
mathematical approach developed in this section will be ap-
plied to more involved situations in Secs. III and IV.

We start with the rate equation for Nk�N�, the average
number of nodes with degree k for the network consisting of
N nodes. For simplicity, we assume that the growth process
starts from a dimer configuration, that is, n0=2 nodes joined
by a link. Thus, Nk�2�=2�k,1, where �kq stands for the Kro-
necker �. At each time step a new node is added and con-
nected to a node i chosen at random out of N old vertices
with probability proportional to its degree ki, thus obtaining a
new network with N+1 nodes. The network is a tree graph.
The recursion formula for Nk�N� has the form

Nk�N + 1� = Nk�N� + �k,1 +
k − 1

2�N − 1�
Nk−1�N�

−
k

2�N − 1�
Nk�N� . �1�

The equation is exact for any N. The Kronecker � stands for
the introduction of a new node with degree 1. The next term
corresponds to the appearance of a node with degree k as a

result of link’s addition to the node with degree k−1. The
last term describes how fast nodes with degree k disappear
due to link’s addition to those nodes.

In the limit N→	 the solution is given by Nk�N�k
BA

where, according to Ref. �13�,

�k
BA =

4

k�k + 1��k + 2�
. �2�

In this paper we are interested in the general solution for
Nk�N��N�k�N�, with �k�N� being the degree distribution of
a finite network. Our method to obtain this distribution is
based on using its moments. We shall do this in several steps.
First, we consider moments for �k�N�, which are of particu-
lar importance for many problems including epidemic
spreading and percolation �16�. Let Mn�N� be the nth mo-
ment of Nk�N� and 
n�N� be the nth moment of the degree
distribution �k�N�:

Mn�N� = �
k=1

	

knNk�N� , �3�


n�N� = �
k=1

	

kn�k�N� =
1

N
Mn�N� . �4�

Multiplying both sides of Eq. �1� by kn and summing over k
we now obtain recursive relations between moments Mn�N�
for different N. For instance, the equations for the first three
moments read

M0�N + 1� = M0�N� + 1, �5�

M1�N + 1� =
2N − 1

2�N − 1�
M1�N� + 1, �6�

M2�N + 1� =
2N

2�N − 1�
M2�N� +

M1�N�
2�N − 1�

+ 1, �7�

with the initial condition Mn�2�=2 imposed by Eq. �3� for
the dimer configuration. The important feature of these �and
higher� relations is that for any n, Mn�N+1� depends only on
lower moments. We can thus solve these equations for
Mn�N� by forward substitution, starting from the lowest mo-
ment. Equation �5� has an obvious solution M0�N�=N. The
solution of Eq. �6� is also easy to guess, being just twice the
number of links: M1�N�=2�N−1�. In order to solve Eq. �7�,
we insert the solution for M1 and we solve the resulting
equation by standard methods. We obtain

M2�N� = 2�N − 1�H�N − 1� , �8�

where H�n�=�i=1
n 1/ i is the harmonic number. Higher mo-

ments can be computed using similar tricks, but the formulas
become much more complicated. The appropriate moments
for �k�N� are


0 = 1, �9�


1 = 2 − 2/N , �10�
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2 = �2 − 2/N�H�N − 1� . �11�

We see that 
2�2 ln N diverges for large N, but is still quite
small for networks of order 109 nodes, the largest real-world
structures like the world-wide web �WWW�. This suggests
that real SF growing networks exhibit strong finite-size ef-
fects, which is indeed true �13�, and the assumption that 
2
=	 for the BA model is far from reality even for very large
networks.

The equation for 
2 gives a rough estimate for the posi-
tion of the cutoff in the degree distribution as imposed by
finite-size effects. Let us assume the cutoff in the degree
distribution to be sharp enough and take �k to be �k=�k

BA for
k smaller than kmax and vanishing above kmax. Then the sec-
ond moment behaves as 4 ln kmax. Comparing this with exact
Eq. �11� we obtain kmax�	N. The position of the cutoff
scales therefore as a square root of the network size, which in
fact has been pointed out by several authors �5,6�. We will
show further explicitly that such scaling indeed holds for the
BA model without initial attractiveness.

To find the correction to �k
BA in the finite network we

introduce a function vk�N� defined as vk�N��Nk�N� /�k
BA.

The function vk�N� gives finite-size corrections. From the
asymptotic properties of �k in the limit of large N we know
that vk�N��N for k�kmax and falls to zero far above the
critical kmax. Equation �1� can be rewritten in terms of vk�N�,

vk�N� =
3

2
�k,1 +

2 + k

2�N − 2�
vk−1�N − 1� −

4 − 2N + k

2�N − 2�
vk�N − 1� .

�12�

To proceed, we define moments mn�N� for the distribution
vk�N�,

mn�N� =
1

N − 1�
k=1

	

knvk�N� , �13�

with the value of the normalization constant 1 / �N−1� moti-
vated by later convenience. Multiplying now both sides of
Eq. �12� by kn and summing over k=1, . . . ,	 we obtain

mn�N + 1� =
1

2N

3 + �

i=0

n−1

cnimi�N� + �2N + n + 1�mn�N�� ,

�14�

where the initial condition

mn�2� = 3 �15�

stems from the configuration of the starting graph and the
coefficients cni are given by

cn0 = 3, and cni = 3
n

i
� + 
 n

i − 1
� for i � 0. �16�

By solving equations for the first few moments we can infer
the general solution

mn�N� =
1

��N��i=0

n+1
Bni

��2 + i/2�
��N + i/2� , �17�

where the coefficients Bni still have to be found and the fac-
tor ��2+ i /2� is singled out for convenience. Inserting this to
Eq. �14� we obtain, after some manipulations,

�
i=0

n+1

Bni�i − n − 1�
��N + i/2�
��2 + i/2�

= 3��N� + �
j=0

n−1

cnjBj0��N�

+ �
i=1

n

�
j=i−1

n−1

cnjBji
��N + i/2�
��2 + i/2�

.

�18�

Comparing terms of the same order in � functions we obtain
two recursion relations for Bni,

Bn0 = −
1

n + 1

3 + �

j=0

n−1

cnjBj0� �19�

for i=0 and

Bni = −
1

n + 1 − i
�

j=i−1

n−1

cnjBji �20�

for 0� i�n. The third recursion relation which completes
the set comes from the initial condition �15�,

Bn,n+1 = 3 − �
i=0

n

Bni, �21�

and B00=−3. Returning to mn�N� we find that for large N the
leading term reads

mn�N� � Bn,n+1

�
N +
n + 1

2
�

��N��
2 +
n + 1

2
� � N�n+1�/2An, �22�

with An=Bn,n+1 /�� 5+n
2

�. Such scaling indicates that for large
N,

vk�N� � Nw�k/	N� , �23�

where w�x� is a function having An as its moments:

An = 
0

	

w�x�xndx . �24�

Therefore, the degree distribution for large but finite BA tree
network is well approximated by

�k�N� = �k
BAw�k/	N� . �25�

The functional form w�x� of the cutoff can be found analyti-
cally by reconstructing it from its moments An, which ex-
press through the coefficients Bn,n+1. However, in order to
calculate them one has to know all Bni resulting from Eqs.
�19�–�21�. Fortunately, they can be conveniently stored by
means of appropriately defined generating functions, for
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which we can write differential equations and solve them. In
Appendix A we show that

An =
�2 + n�2n!

���3 + n�/2�
. �26�

The behavior of the cutoff function w�x� for large values of
the argument is dominated by the behavior of An for large n,
which can be easily obtained using Stirling’s formula for the
factorial and for the Euler’s � function

log An �
1

2
n log n . �27�

Let us now compare it with moments In of the function
exp�−�x /���,

In = 
0

	

xn exp�− �x/���dx =
n+1

�
�
n + 1

�
� . �28�

For large n the leading term of ln In��n log n� /� is the same
as in Eq. �27� with �=2, which means that the tail of w�x�
falls like a Gaussian function. The parameter  can be estab-
lished by comparing subleading terms in In and An. The
value =2 obtained in this way will be confirmed below by
direct calculation of w�x�.

From the values of the coefficients An, the function w�x�
can be restored using a trick involving inverse Laplace trans-
form. In Appendix B we show how to obtain w�x� expressed
as an infinite series,

w�x� = 1 −
4

	�
�
n=1

	

x2n+1 �− 1�nn2

n ! 22n�2n + 1�
. �29�

One can check that this result corresponds to a Taylor series
for an expression involving the complementary error func-
tion erfc�z�,

w�x� = erfc�x/2� +
2x + x3

	4�
e−x2/4, �30�

the result given in �9�, which is close to an approximate
result of �15�. The series in Eq. �29� is rapidly convergent
and, if truncated at some nmax, can serve for numerical cal-
culations.

III. ARBITRARY INITIAL CONDITION

In this section we generalize the method to the case when
the network’s initial configuration is a complete graph with
more than two nodes. We proceed exactly as before. First we
write the rate equation for the average number of nodes of a
given degree. Second, we factorize the solution into two
terms: the one corresponding to the thermodynamical limit
N→	 and another one vk�N� giving the correction for finite
N. Then we find moments for vk�N� and deduce the form of
w�x� from their asymptotic properties using formulas given
in Appendixes. Although we still add one link per one added
node, we shall consider here a more general rate equation for
Nk�N�,

Nk�N + 1� = Nk�N� + �k,m +
k − 1

2�N − ��
Nk−1�N�

−
k

2�N − ��
Nk�N� , �31�

with two free parameters m and �. The parameter m corre-
sponds to the number of links added with one new node. In
the cases considered in the previous and in the present sec-
tion we have m=1. The case m�1 is considered in Sec. V.
The parameter � in the denominators in Eq. �31� is intro-
duced to guarantee the normalization of the probability of
preferential attachment and depends on the form of the pref-
erential attachment kernel and on initial conditions. For the
linear attachment kernel k the normalization condition is
�kNk�N�=2L, with L being the overall number of bonds. We
define � to fulfill the equation 2L=2�N−��. If we start with
a complete graph with n0 nodes then �=n0�3−n0� /2, which
in particular gives 2L=2�N−1� for the dimer configuration
from Sec. II. Here we first consider Eq. �31� for arbitrary m
and � and set appropriate values of these parameters at the
end of computations.

In the thermodynamical limit the degree distribution is
given by �13�

�	�k� =
2m�m + 1�

k�k + 1��k + 2�
, �32�

for all k�m and does not depend on �. Like in the previous
section, we insert Nk�N�=�k

BAvk�N� and obtain the equation
for vk�N�. Then, defining the moments mn�N�
��kk

nvk�N� / �N−��, we obtain the recursion relation

mn�N + 1� =
1

2�N + 1 − ��
�2 + m�mn + �
i=0

n−1

cnimi�N�

+ �2N − 2� + 3 + n�mn�N�� , �33�

mn�n0� =
�n0

2 − 1�n0
2

2m�m + 1��n0 − ��
�n0 − 1�n, �34�

where the initial condition �34� has now a more complicated
form than before. The general solution for mn�N� can still be
written by means of � functions

mn�N� =
1

��N + 1 − ���i=0

n+1

Bni
��N + 1 − � + i/2�
��n0 + 1 − � + i/2�

, �35�

which imposes that vk�N� scales as a function of x�k /	N
exactly similar to Eq. �23�. The equations for Bni look
similar to Eqs. �19�–�21�, but with the constant 3
changed for �2+m�mn��n0+1−�� in the first and for
mn�n0���n0+1−�� in the third equation. Proceeding as in
Sec. II, we find generating functions for Bni and finally, the
expression for An:
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An =
��1 + n0 − ��

��n0 + 3/2 − � + n/2�� ��3 + m + n�
�n + 1���m + 2�

+
m0�n0���2 + n0 + n�

��n0 + 2� � . �36�

The generating function M�z� will therefore be a sum of two
f functions defined in Eq. �B5�, see Appendix B. Using the
results of Appendix B we can immediately write the expres-
sion for the cutoff function w�x�,

w�x� = ��1 + n0 − ��� 1

��m + 2�
f̃ 1

2
,n0+ 3

2
−�,3+m,2�x�

+
m0�n0�

��n0 + 2�
f̃ 1

2
,n0+ 3

2
−�,2+n0,1�x�� , �37�

where f̃ functions are defined in Appendix B and �, m0 have
been given above and depend only on n0. In Fig. 1 we plot
w�x� calculated from Eq. �37� together with the results of
numerical simulation for finite-size networks. One readily
infers a strong dependence of w�x� on the size of the seed
graph n0. This sensitivity to the initial conditions has just
been reported in �9� as well as in Ref. �17�, where another
quantity was measured. However, if one compares the
asymptotic behavior of An’s,

ln An �
1

2
n ln n −

n

2
�1 − ln 2� , �38�

with that of Eq. �28�, one immediately finds that for large n
the function w�x� still behaves similar to exp�−x2 /4�, inde-
pendently of n0. Therefore the degree distribution for the BA
tree model without initial attractiveness has always a Gauss-
ian cutoff whose position scales as �N1/2.

IV. GENERALIZED ATTACHMENT KERNEL

The considerations above can be easily extended to the
case of preferential attachment kernel k+a0 with initial at-
tractiveness a0�−1. In Ref. �13� it is shown that the degree
distribution in the thermodynamical limit reads

�k
	 =

�2 + a0���3 + 2a0�
��1 + a0�

��k + a0�
��k + 3 + 2a0�

. �39�

For large k, �k
	 decays according to a power law �k−� with

�=3+a0. Therefore, this model can reproduce any exponent
� observed in real-world networks. In �13� it has been shown
that the model is equivalent to the growing network with
redirection �GNR�, which is a convenient method for simu-
lating the model on a computer. At each step we choose at
random one node i from the set of existing nodes. A newly
introduced node is attached with probability 1−r to this i,
and with probability r to its ancestor, i.e., to the node the
proper, oriented link of i was attached to when this node was
itself introduced into the network. With the choice r=1/ �a0

+2�, the GNR model is equivalent to the BA tree model with
initial attractiveness. In all numerical simulations showed in
this section the GNR model is used. A generalized version of
the GNR model which works for m�1 links added per one
new node is described in �18�.

The recursion formula for Nk�N� is slightly modified in
comparison to Eq. �1� and reads

Nk�N + 1� = Nk�N� +
k + a0 − 1

N�2 + a0� − 2
Nk−1�N�

−
k + a0

N�2 + a0� − 2
Nk�N� + �k,1, �40�

but the initial conditions remain the same as in Sec. II. In-
serting now Nk�N�=vk�N��k

	, we obtain the equation for the
function vk�N� and then the equation for the moments mn�N�:

mn�N + 1� =
3 + 2a0

N�2 + a0�
+

N − 1

��N − 1��2 + a0� + a0�N

� ��
i=0

n−1

cnimi�N� + �N�2 + a0� + a0 + 1

+ n�mn�N�� , �41�

where cni’s read now

cn0 = 3 + 2a0,

cni = �3 + 2a0�
n

i
� + 
 n

i − 1
�, for i � 1. �42�

Following the same steps as in Sec. II we can find the gen-
eral functional form of mn�N� and its leading behavior for
large networks:

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

x

w
(x

)

FIG. 1. The cutoff function w�x� giving finite-size corrections to
the degree distribution, calculated from Eq. �37� for the starting
graph with n0=3 �black lower line� and 5 nodes �black upper line�.
Our analytical results agree very well with w�x� obtained from av-
eraged degree distributions for 2�104 generated networks of size
N=104 �gray lines�.
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mn�N� �
Bn,n+1�
N +

a0 + n + 1

2 + a0
�

�
N − 1 +
a0

2 + a0
��
2 +

a0 + n + 1

2 + a0
��N − 1�

� N
n+1
2+a0An, �43�

with An=Bn,n+1 /��2+
a0+n+1

2+a0
�. Therefore, the function vk�N�

obeys the following scaling rule:

vk�N� → Nw�k/N1/�2+a0�� , �44�

where the function w�x� has moments An depending on a0.
Equation �44� indicates that the cutoff scales as N1/��−1�

where �=3+a0 is the exponent in the power law for �k
	. This

is in agreement with arguments given in �9�. For a given size
N, the cutoff shifts to lower values of N when the exponent �
increases. This implies that the power law in the degree dis-
tribution can hardly be seen for ��4, because even for large
networks with N=106 nodes the cutoff corresponds to the
value of kmax�100 and the power law lasts only for 1–2
decades in k. This partially explains the fact that the SF
networks with � above 4 are practically unknown �2�.

As before, we can find a general formula for An and esti-
mate its leading behavior

ln An �
1 + a0

2 + a0
n ln n . �45�

Comparing this to Eq. �28�, as it has been done before, one
obtains that for large x the function w�x� decays similar to
exp�−�x /��� with

� =
2 + a0

1 + a0
=

� − 1

� − 2
. �46�

This agrees very well with numerical findings and means that
the cutoff for ��3 is no longer of a Gaussian type. For 2
���4, as often found in real networks, � is always larger
than 1.5 and therefore the cutoff w�x� cannot be approxi-
mated by a pure exponential decay observed in some net-
works �2�; exponential cutoffs most likely have a different
origin than the finite-size effects. The value of  can also be
obtained from subleading terms and is given by

 = �2 + a0��1 + a0�−1/�. �47�

The result for M�z� has now the form of Eq. �B5� with

N =

2�
1 +
a0

2 + a0
�

��5 + 2a0�
, a = 6 + 3a0, b = 12 + 13a0 + 4a0

2,

� =
1

2 + a0
, � =

5 + 3a0

2 + a0
, � = 4 + 2a0, � = 2, �48�

and therefore w�x� is given by Eq. �B23� with the corre-
sponding values of parameters. In Fig. 2 we plot w�x� for
a0=−1/2, 0, and 1. For the purpose of numerical calculations
all series have been truncated, with the error being less than
10−4 in the plotted area. These results show that the curves

become more flat with increasing a0 and agree well with
w�x� obtained in simulations of finite size networks.

As before, the starting graph has large influence on the
exact form of w�x�. We do not consider here the dependence
on the size n0 of the seed graph, however, just like in Sec. III,
one can show that asymptotic properties of the cutoff func-
tion are insensitive to n0 and therefore for x being suffi-
ciently large, w�x��exp�−�x /��� depends only on a0, i.e.,
only on the exponent � in the power law �k�k−�.

V. BA MODEL WITH m�1—BEYOND THE TREE MODEL

In the previous sections we have considered growing net-
works restricting ourselves to the case when graphs are es-
sentially trees �the possible cycles can only stem from the
seed graph�. The general case of m�1 links joined to a new
node in a single step is much more complicated. Each of m
proper links of a newly introduced node has to be connected
to one of N preexisting nodes according to the preferential
attachment rule. However, since multiple links are not al-
lowed, the nodes to which links have been connected on this
step have to be excluded from the set of nodes available for
further linking. Thus, when a new link is introduced, the
probabilities of attaching it to one of the preexisting nodes
depend whether the link is the first, second,. . ., etc. of m. The
rate equation for Nk�N� can still be obtained in this case.
However, its structure is very sophisticated and it is highly
nonlinear in Nk and k. This makes impossible the immediate
application of our method. To proceed, we note that for large
N and m�N the probability of choosing the same node as a
candidate for link’s attachment more than once in a single
time step is very small. We can thus write the rate equation
fully disregarding the exclusion of multiple connections,
since their relative number should be small in the thermody-
namic limit N→	. For instance, for m=2 the approximate
equation for Nk�N� reads

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

x

w
(x

)

FIG. 2. Plots of w�x� calculated from Eqs. �48� and �B23� for
a0=−0.5, 0, and 1 �solid lines from top to bottom� which corre-
spond to �=2.5,3, and 4, respectively. The curves become flat with
increasing a0. The thick gray lines are w�x� obtained from averaged
degree distributions for 2�104 networks of size N=104. The tails
decay like exp�−x�� with �=3,2 ,3 /2, respectively, in agreement
with numerical findings.
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Nk�N + 1� = Nk�N� + �k,2 +
k − 1

2N − 3
Nk−1�N� −

k

2N − 3
Nk�N� .

�49�

We assume additionally Nk�3�=3�k,2, that is, we start from a
complete graph with n0=3 �triangle�. In the general case m
�2, the approximate equation takes the form of Eq. �31�.
The origin of all terms is the following. The Kronecker �
gives the addition of a node with m links at each time step.
The number of links L=m�N−�� with

� = n0�2m + 1 − n0�/�2m� �50�

gives the normalization factor 2L for the probability of at-
tachment. The factor m hidden in 2L cancels out with m
possibilities of choosing links at each step. For m=2 and
n0=3, it reduces to Eq. �49�.

Like before, we expect some dependence on starting
graph, but as long as asymptotic properties of w�x� are con-
cerned, its particular choice does not seem to be important. It
is therefore tempting to assume n0=m+1 because it allows
one to have �k=0 for all k�m at each time step. However,
we must remember that Eq. �31� with � given by Eq. �50� is
a reasonable approximation of the unknown true rate equa-
tion for Nk�N� only if m�N at each stage of the network’s
growth. Thus our expressions for w�x� work well only for
m�n0.

We can check the validity of Eq. �31� calculating the mo-
ments 
n�N� of the degree distribution �k. Equation �31� has
a form similar to Eq. �1� and thus all results are similar to
those presented in Secs. II–IV. However, the approximation
we made includes only leading terms in the limit of large N
and the quality of that approximation can only be checked by
computer simulations. For instance, for n0=m+1, the first
three moments 
n�N� are


0 = 1, �51�


1 = m�2 − �m + 1�/N� = 2L/N , �52�


2 = 
2 −
m + 1

N
�
m2 + �

i=m+1

N−1
m�m + 1�
2i − m + 1

� . �53�

The first two moments are exact although we have used the
approximate equation. For large N, the last expression re-
duces to


2 � 
2 −
m + 1

N
��m2 +

m�m + 1�
2

�� − ln 2 − H
1 + m

2
�

+ ln�2N − m − 1��� , �54�

where H�n� are harmonic numbers and ��0.5772 is the
Euler-Mascheroni constant. Thus the second moment grows
similar to m�m+1�ln N, and similarly to what has been done
in Sec. II one can infer that the cutoff scales the same as 	N.
In Table I we compare the quality of formula �54� for m=2
with 
2 found for numerical solutions of exact equation for

Nk�N�. The good agreement confirms that the approximation
we have made performs well.

Let us go now to the corrections to the degree distribu-
tion. In the thermodynamic limit, �k

	 is given by Eq. �32�.
The degree distribution for large but finite networks corre-
sponds to �k

	 multiplied by w�k /	N�. From Sec. III we know
that w�x� is expressed by Eq. �37� where m and n0 are now
completely arbitrary and � is given by Eq. �50�. The
asymptotic form of w�x��exp�−x2 /4� resulting from ana-
lytical formula is the same as in Sec. III. In Fig. 3 we com-
pare our approximate analytical solution with the results of
direct numerical simulations for different n0. A small devia-
tion between analytical and numerical curves is evident. This
deviation is the largest for n0=3 and the smallest for n0
=15, confirming that the larger the seed graph is, the better
the performance of our approximation.

VI. CONCLUSIONS

We have investigated finite-size corrections to the degree
distribution �k in the Barabási-Albert model of growing net-
work, assuming preferential attachment kernel k+a0. Impos-
ing that �k is a product of known distribution �k

	�k−� for

TABLE I. Comparison between exact and approximate value of
the second moment 
2 in the case of m=2.

N 
2 exact 
2 from Eq. �54� Error in %

200 34.16 35.26 3.2

1000 43.73 45.15 3.2

2000 47.83 49.34 3.1

0 1 2 3 4 5 6
0

2

4

6

8

10

x

w
(x

)

FIG. 3. The function w�x� for m=2 and for n0=3,7 ,10, and 15
�curves from the flattest to the most peaked�. The agreement be-
tween the analytical solution and simulation results is not as good
as before due to approximate character of solved equation. The
simulation data were obtained for N=4000. The dip at about x=1
and the peak at about x=2 especially pronounced in the case of
larger seed graphs mean that for large starting graph much more
nodes with high degrees is present than it would be expected for the
asymptotic power-law behavior of �k

	.
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infinite network and the function w�x� giving the finite-size
cutoff in the rescaled variable x=k /N1/��−1�, we have reduced
the problem to finding the moments of w�x�. We have shown
that for sufficiently large N they grow faster than exponen-
tially and give the explicit formula for their leading behavior.
We have found the expression for w�x� and argued that far
above the cutoff it behaves as �exp(−�x /��) with �= ��
−1� / ��−2� for any exponent � lying in the range 2���	.
We discuss the dependence of w�x� on the initial configura-
tion of the network and show that although it has strong
influence on the exact form of w�x�, its asymptotic properties
are independent on the seed graph. Moreover, we give a
general expression for w�x� in terms of convergent power
series in x and present plots for some special cases.

The approach we have developed here allows for treating
the general BA model in another fashion. This approach can
also be applied to other models of growing networks pro-
vided the recursion equations for the connectivity Nk�N� are
known.
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APPENDIX A

Let us define the following generating functions for Bni:

F0�x� = �
n=2

	

Bn0
xn

n!
�A1�

and

Fi�x� = �
n=i

	

Bni
xn

n!
, �A2�

for i�0. Note that Eq. �A1� is not a special case of Eq. �A2�.
We start from Eq. �19�, multiplying its both sides by �n
+1�xn /n! and summing over n=2, . . . ,	. As a result one can
easily show that F0�x� satisfies the differential equation

�ex − 1�F0��x� = �2 − 3ex�F0�x� − 3�3x − 1��ex − 1� − 3x ,

�A3�

with F0�0�=0. Equation �A3� has the following solution:

F0�x� = 2 − 3x − e−2x − e−x. �A4�

In a similar way, from Eq. �20� and using the definition of cni
from Eq. �16�, we obtain the differential equation for Fi�x�,

�1 − ex�Fi��x� = �3ex − 2 − i�Fi�x� + Bi−1,i
xi−1

�i − 1�!�3ex − 3

+
i − 1

x
�ex − 1 − x�� . �A5�

This complicated equation has a simple solution due to the

fact that Fi�x� contains only powers of x higher than i−1,

Fi�x� = Bi−1,i
e−�2+i�x�ex − 1�i−1 − xi−1

�i − 1�!
. �A6�

Now, if we multiply Eq. �21� by xn /n! and sum over n
=1, . . . ,	, we find

�
n=1

	
xn

n!
Bn,n+1 + �

i=0

	

Fi�x� = 3�ex − x − 1� . �A7�

Substituting Fi�x� by Eqs. �A4� and �A6� and defining a new
generating function for the coefficients Bn,n+1,

G�z� = �
n=1

	
zn

n!
Bn,n+1, �A8�

we obtain the expression

e−3xG�1 − e−x� = 3ex + 1 + e−2x + e−x − 6e−3x, �A9�

as follows from Eq. �A7�. This equation for G�z� can be
readily solved,

G�z� = 3�1 − z�−4 + �1 − z�−3 + �1 − z�−2 + �1 − z�−1 − 6.

�A10�

The values of Bn,n+1 can be obtained by using Cauchy’s for-
mula as integrals over a contour encircling the point z=0 in
the complex plane,

Bn,n+1 =
n!

2�i
� dz

zn+1G�z� = n !
�2 + n�2�3 + n�

2
. �A11�

Finally, from the definition of An=Bn,n+1 /�� 5+n
2

�, we obtain
Eq. �26�.

APPENDIX B

To obtain the functional form of the cutoff w�x� we define
a generating function

M�z� = �
n=0

	

An
zn

n!
. �B1�

Comparing this definition with Eq. �24� we see that M�z�
=�0

	exp�zx�w�x�dx, so that

M�− z� = 
0

	

exp�− zx�w�x�dx �B2�

is the Laplace transform of w�x�. Therefore w�x� is given by
the inverse Laplace transform of M�z� or equivalently by the
Fourier transform of M�−iz�,

w�x� =
1

2�


−	

	

dzeizxM�− iz� . �B3�

Using the explicit form of coefficients An we obtain
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M�z� = �
n=0

	
�2 + n���n + 3�

��n + 2����3 + n�/2�
zn. �B4�

This series has an infinite radius of convergence. The func-
tion M�z� given by Eq. �B4� is a special case of more general
power series

M�z� = N�
n=0

	 �an + b���n + ��
��n + �����n + ��

zn, �B5�

which depends on six parameters a ,b ,� ,� ,� ,� and where N
gives the appropriate normalization. We introduce an auxil-
iary function f�,�,�,��z�,

f�,�,�,��z� = �
n=0

	
��n + ��

��n + �����n + ��
zn. �B6�

This one is a special case of a Fox-Wright � function �19� or
of a Fox H function �see, e.g., �20��. Its Fourier transform
can be written as follows:

f̃�,�,�,��x� =
1

2�


−	

	

dzeizxf�− iz� = IC�x� − IS�x� , �B7�

where IC�x� and IS�x� are cosine and sine transforms of real
and imaginary part of f�−iz�, respectively,

IS�x� =
1

�


0

	

sin�zx�Im f�− iz�dz , �B8�

IC�x� =
1

�


0

	

cos�zx�Re f�− iz�dz . �B9�

We consider here only IC�x� since repeating all calculations
presented below for IS�x� one can check that IC�x�=−IS�x�.
The function IC�x� can be expressed via the Mellin transform
fC

* �s� of Re f�−iz�,

IC�x� =
1

�x

1

2�i


−i	

i	

fC
* �s���1 − s�sin��s/2�xsds ,

�B10�

where

fC
* �s� = 

0

	

zs−1Re f�− iz�dz . �B11�

The real part of f�−iz� reads

Re f�− iz� = �
n=0

	
�− z2�n��2n + ��

��2n + ����2�n + ��
. �B12�

We now substitute two of three � functions by their integral
representations,

��2n + �� = 
0

	

e−tt2n+�−1dt , �B13�

1

��2n + ��
= 

H

euu−2n−�du , �B14�

where “H” denotes the Hankel contour. Changing variables
z→v :z=v u

t , we obtain the following integral representation:

fC
* �s� = 

0

	

dte−tt�−1−s
Ha

dueuus−�

� 
0

	

dvvs−1�
n=0

	
�− v2�n

��2�n + ��
. �B15�

The last integral is now just the Mellin transform of the
Mittag-Leffler function defined as

E2�,��t� = �
n=0

	
tn

��2�n + ��
. �B16�

From �21� �p. 301�, we have

E2�,��− v2� ↔
Mellin��s/2���1 − s/2�

2��� − �s�
, �B17�

and after simple algebraic manipulations we finally arrive at

fC
* �s� =

��� − s���s/2���1 − s/2�
2��� − s���� − �s�

. �B18�

Now we are able to calculate f̃�x�=2IC�x� as an inverse Mel-
lin transform. Using the identity for � functions

��t���1 − t� =
�

sin��t�
, �B19�

and applying the residue theorem we obtain

f̃�,�,�,��x� =
1

2�i


−i	

i	

dsxs−1 ��� − s���1 − s�
��� − �s���� − s�

= �
n

ressn
� ��� − s���1 − s�

��� − s���� − �s�
xs−1�

s=sn

,

�B20�

where the sum runs over all points sn at which either
��1−s� or ���−s� has a pole. The above formula simplifies
for � ,� being positive integers m ,k,

f̃�,�,m,k�x� = �
n=0

	

�− x�n �m − 2 − n��m − 3 − n� ¯ �k − 1 − n�
��� − � − �n�n!

,

�B21�

where we make use of the fact that resz=−n��z�= �−1�n /n!.
Let us come back to M�z� which can be expressed through
f�z� and its derivative f��z�,

M�z� = N�azf�,�,�,�� �z� + bf�,�,�,��z�� . �B22�

Then w�x� is given by Fourier transforms of the two func-
tions f�z� and zf��z�. Integrating by parts we can change
from zf�,�,�,�� �z� to f�,�−�,�−1,�−1�z�+const, where the constant
term vanishes under the transform, so that we finally obtain
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w�x� = N�axf̃�,�−�,�−1,�−1�x� + �b − a� f̃�,�,�,��x�� ,

�B23�

where f̃’s are given either by Eq. �B21� or by more general
Eq. �B20�.

Applying now Eq. �B23� to N=1, a=1, b=2, �=1/2, �
=3/2, �=3, �=2 as stems from Eq. �B4�, we obtain the func-
tion w�x� for the BA tree model,

w�x� = xf̃1/2,1,2,1�x� + f̃1/2,3/2,3,2�x�

= �
n=0

	
�− x�n

n!
� − nx

��1/2 − n/2�
+

1 − n

��1 − n/2�� .

�B24�

With the help of Eq. �B19�, we obtain after some algebraic
manipulations,

w�x� = 1 −
4

�
�
n=1

	

x2n+1�− 1�nn2��n + 1/2�
��2n + 2�

. �B25�

Finally, keeping in mind that

��2n + 2� =
22n

	�
n ! �2n + 1���n + 1/2� , �B26�

we obtain Eq. �29�.
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